Sparse-Coding-Based Computed Tomography Image Reconstruction
نویسندگان
چکیده
منابع مشابه
Sparse-Coding-Based Computed Tomography Image Reconstruction
Computed tomography (CT) is a popular type of medical imaging that generates images of the internal structure of an object based on projection scans of the object from several angles. There are numerous methods to reconstruct the original shape of the target object from scans, but they are still dependent on the number of angles and iterations. To overcome the drawbacks of iterative reconstruct...
متن کاملCompressed Sensing Based Computed Tomography Image Reconstruction
In computed tomography (CT), an important objective is to reduce radiation dose without degrading image quality. The radiation exposure from CT scan will make severe problem in humans. This has high risk in the case of children and female. The higher exposure will lead to leukemia, cancer etc. So that low dose CT image reconstruction is the main concern now days. We have to reconstruct the imag...
متن کاملQuantitative image-based spectral reconstruction for computed tomography.
Computed tomography (CT) devices are routinely employed to obtain three-dimensional images of the human body. The reconstructed CT numbers represent weighted x-ray attenuation coefficients. Their spectral weighting is influenced by the selected x-ray source spectrum, the detector characteristics, and the attenuating object itself. The quantitative ground truth of the scanned object is given by ...
متن کاملRandomized Iterative Reconstruction for Sparse View X-ray Computed Tomography
With the availability of more powerful computers, iterative reconstruction algorithms are the subject of an ongoing work in the design of more efficient reconstruction algorithms for X-ray computed tomography. In this work, we show how two analytical reconstruction algorithms can be improved by correcting the corresponding reconstructions using a randomized iterative reconstruction algorithm. T...
متن کاملSparse-view computed tomography image reconstruction via a combination of L(1) and SL(0) regularization.
Low-dose computed tomography reconstruction is an important issue in the medical imaging domain. Sparse-view has been widely studied as a potential strategy. Compressed sensing (CS) method has shown great potential to reconstruct high-quality CT images from sparse-view projection data. Nonetheless, low-contrast structures tend to be blurred by the total variation (TV, L1-norm of the gradient im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2013
ISSN: 1537-744X
DOI: 10.1155/2013/145198